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Elastic waves in fluid-saturated granular media depend on the grain rheology, which can be 
complicated by the presence of gas bubbles. We investigated the effect of the bubble dynamics and 
their role in rheological scheme, on the linear Frenkel-Biot waves of P1 type. For the wave with the 
bubbles the scheme consists of three segments representing the solid continuum, fluid continuum and 
bubbles surrounded by the fluid. We derived the Nikolaevskiy-type equation describing the velocity of 
the solid matrix in the moving reference system. The equation is linearized to yield the decay rate λ as 
a function of the wave number k. We compared the ( )k -dependence for the cases with and without 

the bubbles, using typical values of the input mechanical parameters. For both the cases, the ( )k  

curve lies entirely below zero, which implies a global decay of the wave. We found that the increase 
of the radius of the bubbles leads to a faster decay, while the increase in the number of the bubbles 
leads to slower decay of the wave. 
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1. Introduction 
 
 The fundamentals of the theory of wave propagation in porous elastic solids can be found in [1, 2] 
or, for a more recent review, [3]. In [1, 2] Biot generalised the first principles of linear elasticity and today, 
most studies in acoustics, geophysical and geological mechanics rely on his theory. Biot also deduced [4, 5] 
the dynamical equations for the wave propagation in poroelastic media. The elastic modulus of the porous 
matrix with first-order nonlinearity was described in [6]. According to the Frenkel-Biots theory, there are 
two types of longitudinal waves propagating in a saturated porous medium. The first type is fast and weakly 
damped (P1-wave), whereas the other type is slow and strongly damped (P2-wave). The slow P-wave has 
first been observed in a laboratory by Plona [7]. Yang et al. [8] showed that the dispersion of velocity and 
attenuation of the fast P1-wave are both affected by the viscoelasticity of the medium, but has almost no 
effect on the slow P2-wave. In addition, they proved that the dominant frequency of the fast P1-wave shifts 
linearly toward lower frequencies due to the conditions of low permeability and low porosity; this plays a 
significant role in exploration for gas and oil. 
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 Nikolaevskiy [9] derived a model describing the propagation of nonlinear longitudinal waves in a 
viscoelastic medium taking into account complicated rheology of grains 
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where v is the velocity of the solid matrix and the coefficients Ap+1 are constants linked to mechanical 
parameters of the system. The terms in Eq.(1.1) account for the effects of non- linearity, dissipation and 
dispersion. Based on [9] Nikolaevskiy extended [10] the evolution Eq.(1.1) to include the global dissipation 
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where   and N are constants. Experimental evidence indicated that the existence of gas bubbles in the 
saturated porous medium changes the characteristics of this medium [11]–[13], acoustic properties and the 
velocity of the wave. As Nikolaevskiy pointed out [10], in rocks saturated with fluids, the P1-wave is the 
only observable wave. However, the presence of gas, even in small proportion can affect the wave type [14], 
so that P2-wave may be visible. 
 Dunin et al. studied [11] the effect of gas bubbles on the P1- and P2-waves. They found that the 
dispersion curve of the P2-wave consists of two branches: a low-frequency branch and a high-frequency 
branch. In this work, a simple stress-strain relation was used, Ee   (in standard notations). Nikolaevskiy 
used a much more complicated stress-strain relation that involves higher-order time derivatives of the stress 
  and strain e. This relation is the result of the rheological scheme shown in Fig.1. Eventually, it leads to the 
higher-order partial differential Eq.(1.1). However, the original rheological scheme [9] does not include gas 
bubbles. Nikolaevskiy and Strunin [14] pointed out the place in this scheme that the bubbles should take, see 
Fig.1. In the present work, we aim to include the bubble into the rheological scheme and, based on this, 
derive the Nikolaevskiy-type Eq.(1.1), where the coefficients pA  will depend on the bubble-related 

parameters. 
 

 
 

Fig.1. Rheological scheme for the grain. The branch   corresponds to the bubble [14]. 
 

2. Basic equations of one-dimensional dynamics 
 
2.1. Conservation of mass and momentum 
 
 For a one-dimensional case the momentum and mass balance equations are 
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where the subscripts s and f label the solid and gas-liquid mixture, respectively, ρ, v, and u are the 

corresponding densities and mass velocities, m is the porosity, ( )ef is the effective Terzaghi stress, p is the 
pore pressure, and I is the interfacial viscous force approximated by 
 

  ( ),I m v u                       
( )f m

k


   

 

where ( )f  is the gas-liquid mixture viscosity and k is the intrinsic permeability. 
 
2.2. Dynamics of bubbles 
 
 The equation of the dynamics of a bubble [11] has the form 
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where R is the bubble radius, p is the pressure in the liquid,  χ/g 0p R R  is the gas pressure inside the 

bubble (here 3   ,   is the adiabatic exponent), ( )L  is the density of the liquid without the bubbles, and 

  is the viscosity of the liquid without the bubbles. The density equations for the solid and liquid without 
gas are 
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 The mean density of the gas-liquid mixture is 
 

  ( ) ( ) ( )( )f L g1                         (2.5)   
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where ( / ) 3
04 3 R n   . 

 Here σ is the true stress,   is the volume gas content and 0n  is the number density of the bubbles per 

unit volume. In Eq.(2.5) we can neglect the density of the gas ( )g  due to the low gas content. The change in 
φ is due to the change in the bubble radius R. Then Eq.(2.5) becomes 
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 Similarly to [15]  , we also assume that the pore pressure p is equal to the pressure in the liquid far 
from the bubble.  
 
2.3. Stress-strain relation    
 
 In this section we derive the stress-strain relation for the viscoelastic medium based on the 
rheological Maxwell-Voigt model, which includes the gas bubble. The model includes two friction elements 
with viscosities µ1 and µ2, three elastic springs with the elastic moduli E1, E2, and E3, and three oscillating 
masses M1, M2, and M3. The total stress in denoted σ. We also denote the displacements of the elements of 
the model by e with respective subscripts as shown in Fig.2. Now we write the second Newton’s law for the 
elements and the kinematic relations 
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 Equations (2.7) generate the following relation between the stress and strain 
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 Generalizing Eq.(2.8) using a similar approach to [9], we get 
 

  
( )

( ) ( )

, , , ,

,
q ef q

ef s
q 2 b qq q

q 1 3 q 1 2 3 5

D D e
b E e k p a

Dt Dt 


           (2.9)   



The effect of rheology with gas bubbles on linear elastic ... 579 

where ( ) ,ef  is the effective stress, kb is the bulk elastic module of the porous matrix, 
1
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and the coefficients aq and bq are expressed as 

 
  a1 = [(E2 + E1) E3 + E1E2],          a2 = M2, 
 
                a3 = [(E2 + E1) M3 + (E3 + E1) M2 + E3M1],           a5 = [(M2 + M1) M3], 
 
  b1 = (E3 + E1),             b3 = M3. 

 

 
 

Fig.2. Rheological scheme including a gas bubble. 
 

 Finally, we add the closing relation between the deformation e  and the velocity v  of the solid 
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3. Waves in saturated media including gas bubbles 
 
 Following the approach of Nikolaevskiy [10], we consider the P1-wave in porous media under full 
saturation. Accordingly, we assume that the mass velocities v and u have the same sign 
 
  v = u + O (ε v)     (3.1) 
 
where ε is the small parameter. The Darcy force has the order as shown 
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 Describing a weakly non-linear wave, we use the running coordinate system with simultaneous scale 
change 
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 Thus, the constitutive law (2.9) transforms into the following form 
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 Now, we seek the unknown functions as power series 
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3.1. The first approximation 

 
 By assuming β = α + 1, α = 1 and using Eqs (3.5), we collect the linear terms  ε in system (2.1) 
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 The system (3.6) gives the integrals 
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 The combination of Eqs (3.10) and (3.11) gives           
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 The condition (3.1) means v1 = u1, therefore Eq.(3.12) becomes 
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momentum Eqs (3.7) give 
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 The linear terms  ε in the bubble Eq.(2.2) give 
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 Equations (3.15), (3.16) and (3.17) lead to the integrals 
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 Substituting (3.19) and the value of p1 from Eq.(3.18) into (3.13), leads to 
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 Now, from Eq.(3.14) and using the value of p1 from Eq.(3.18), we obtain the effective stress as    
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 Equations (3.20) and (3.22) must coincide, therefore 
 

  
 
 

( )s
2

2
2 0

1 E

E p c




     

 
 

( ) ( )

( )
.

s s
b 0

s
b 0

B k p
0

A k p

  


 
 (3.23) 

 
 Equation (3.23) gives the velocity of the wave 
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v

m 1 m k Z E 1 m
c

                         (3.25) 

 

         ( ) ( ) ( ) ,
3

f L L 0 2 0 1
11 0

0

4 n R v
Z

p c

  
        

             ( ) ( ) ( ) ( ) .s s s s 1
b 21 0

v
Z 1 k E

c
            

 
3.1. The second approximation 
    

 Collecting the quadratic terms  ε2 in Eq.(3.4), we get 
 

  ( ) ( ) ,ef s
2 2 b 22 E e k p T     (3.26) 

 

where      
( )

, , , ,

( ) .
efqq

q q 1 q q 11 1
q qq q

q 1 2 3 5 q 1 3

e
T a c b c 

 

  
      

   
   

 
 Note that here we keep (as Nikolaevskiy did in [10]) higher powers of ε to represent small 
corrections to the leading terms. These corrections will eventually translate into small corrections in the 
Nikolaevskiy equation derived further in this paper; they will be the object of our study. Thus 
 

  
( )

( ) .
ef

s2 2 2
2 b

e p T
E k

   
  

   
 (3.27) 

   
 From Eq.(2.10) in the order  ε2, we get 
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  ( ) ,2 2ce v F


 


 

   (3.28) 

  .1 1 1v v v1 1
F

2 2

   
     

  

Therefore 

  .2 2e vF 1

c c

 
 

 
 (3.29) 

 
  Substituting Eq.(3.29) into Eq.(3.27), we obtain 
 

   ( ) ( ) .ef s
2 2 b 2 22

T
c E v c k p E F c

 
     

 
 (3.30) 

  
 From the momentum Eq.(2.1) for the solid and liquid, we get 
 

  
( )

( )( ) ( ) ,
ef

s 2 2 2
0 0 10

v p
1 m c 1 m

 
      

  
 (3.31) 

 where 

  ( ) ( ) ( )( ) ( )s s s 11 1 1 1 1 1
1 0 0 1 1 0 10 1 0

v v v v v p1
1 m 1 m c m c m m v

2
      

                   
    

 and    

   ( ) ,f 2 2
0 0 20

u p
m c m

 
   

 
 (3.32)   

where         

  ( ) ( ) ( ) .f f f 11 1 1 1 1 1
2 0 0 1 1 0 10 1 0

u u u u u p1
m m c m c m m u

2
      

                 
 

 
 Due to condition (3.1), the combination of Eq.(3.31) with (3.32) give 
 

  
( )

,
ef

2 2 2
0

v p
c

 
    

  
   (3.33) 

 
where ,1 2     so that 
 

  

  

 

( )
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) .

ef
s L ss L s 11 1 1 1 1 1

0 0 0 10 0 0

L s L3 1 1 1 1
0 0 2 0 1 20 0 0

vv v v p v1
c 1 m m c

2

R v m v
c 4 n m R c

    
                    

 
         

 

 

 
Equations (3.30) and (3.33) result in 
 

     ( ) .2 s
2 0 2 b 2 2

T
E p c v 1 k cp E F c c

         
                             (3.34) 
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From the bubble Eq.(2.2), in the order  ε2, 
 

  

( ) ( )

( ) ( )

( )
.

2 L L
20 0 01

1 1 1L L
2 22 20 0

20
1 0 2 2

m R pRc 1
4 p R p

k

p 1
R p R p

2

    
      

         
       

   (3.35) 

 
We re-write Eq.(3.35) as 
 
  ,2 0 2p p R            (3.36) 
 

where       
( ) ( )

( ) .
2 L

20 0 01 1
0 1 1 1

2

m R p 1R p
c 4 p R p R

k 2

     
            

 

 
 Now we substitute the value of p2 from Eq.(3.36) into Eq.(3.34) to get 
 

  
   

 

( )

( ) .

2 s
2 0 2 b 0 2 2

s
b

E p c v 1 k p R c E F c

T
c c 1 k

         
 

  
 

  (3.37) 

 
 In the second order, the mass balances (2.1) for the solid and liquid-gas mixture have the form 
 

   ( ) ( )( ) ( ) ( )( ) ( ) / ,ef ss s s
0 2 0 2 22 01 m v 1 m p m c

            
   (3.38) 

 

  

 ( )

( )
( )( ) / ,

3 2L 0 0 0 2 10 2
0 2 2

2 1

3 L 2
LL0 0 0 0 1

0
1 2

4 n m R R Rm p
m u m

4 n m R p R
c

         
 
      

   (3.39) 

where   

  

 

 

( ) ( )( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

( ) ,
( )

s efs s s
1 0 10 2

ef
s ef s s 1

1 1 0 1 1 1 10 1
0

1
m 1 m p

2

m v 1 m p v c m p
1 m

           
  

               

   (3.40) 

 

  
 

  

( )( ) ( )

( ) ( )( )
. .

LL L 3
1 1 2 0 1 0 2 0 10

L LL 3 1 1
1 1 0 2 0 1 1 0 1 1 20 0

1
m m p 4 n R R

2
m u

p 4 n R R cm m u

             
              

   (3.41) 

 

The combination of Eqs (3.38) and (3.39) gives 
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   ( ) ( )
( )( )

( )

( )

,

s L 3 2
0 0 2 0 0 0 2 1efs

2 2
2 1

3 L 2
0 0 0 0 1

1 2

1 m p p 4 n m R R R
v

4 n m R p R
c

                  
 

      

  (3.42) 

 

where   ( ) ( )( ) ( )s Ls L
0 0       . 

 
 From Eq.(3.30) we have 
 

  
( )

( ) ( ) .
ef

s s2 2
b b 0 2 2 2

E 1
T k k p R v E F

c c

              
   (3.43) 

 
Now we insert Eq.(3.43) and the value of 2p  represented by Eq.(3.36) into Eq.(3.42) 
 

  
 ( )

( ) ( )

3
s 0 0 0

2 2 1 0 2
1

2
s s 1

2 1 2

4 n m R
1 E v p R c

RT
E F c c c

  
             

 
        

  

   (3.44) 

where 

  

 ( ) ( )
( ) ( )

( )

( )
,

.

s L
0 0s s

1 b
2

3 L 3
0 0 0 0 0 0 0

2
1 2 1

1 m p
k

4 n m R p 4 n m R

    
    



   
  

  

 

 
 The determinant of the left-hand side of the system of Eqs (3.37) and (3.44) coincides with the 
determinant of Eq.(3.23), which equals zero. A non-zero solution for 2v  exists only if the following 
compatibility condition takes place 

  

 

 ( )

2
2 0

s
2

E p c

1 E





       

 ( )

( ) ( )

.

s
2 b

2
s s 1

2 1 2

T
E F c c c 1 k

0
RT

E F c c c

   
       


   
             

            (3.45) 

 

(see Appendix). This is the evolution equation with respect to 1v v  
 

   ( ) ,
2

s1
2 2 2

RT
cM cN c c 1 E E FN 0

 
           

  
   (3.46) 

 

where      ,2
2 0E p c            ( ) ( ) ,s s

b 2 1M 1 k 1 E              ( ) .s 2
0N 1 c    
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 Now, we re-write Eq.(3.46) in terms of v  and re-group 
 

    

   

( )

( )

( )

ˆ( )
3

s 0 0
1 1 2 1 2 2

0

22 2 3
2 s 30 0

1 1 2 b 22 3
0

4 6
2 4 s 4 6

3 3 2 b 5 1 24 6

4 n R1 v
Y 1 m E Y Z

2 p

m RMZ c v v
N c a b E k Z 4 N c a

p k

v v vv
N c a b E k Z N a c

                       
    

                  

                 
,0

   (3.47) 

where 

   ( ) ( ) ( )ˆ ( ) ( ),s s s
1 0 b 2 0m 1 m k Z E 1 m                    ( ) ,2 s

1 2 0 2Y E N c 1 E      

 

     ( ) ( ) ( ) ( ) ,L s s s
2 0 1 bY m 1 k        

  

  ( ) ( ) ( ) ( ) ( )

( )

ˆ ˆ ˆ ˆ( ) ( )

ˆ( ) ,
( )

s s s s L
1 1 0 2 b 1 1 1 1 1 2

2
3 L

0 2 0 1 0 0 1 2 2
0 0

m 1 m Z E k Z 1 m Zm Zm

Z Z
4 n R m m m Z

p p

                 


           

 

 

             

 ( )( ) ( ) ( ) ( )

( ) ( )

( )

( )
ˆ .

s2 s s s L
2 2 0 0 1 2 b 0 20

0

s L 2
1 1 2 2

0

Z
c 1 E Z E k Z m

p

M 1
m Z E N

2 p


                

            

 

 
 In short, the evolution Eq.(3.47) can be written as 
 

  ,
2 3 4 6

2 4
1 2 3 4 62 3 4 6

v v v v v vv
C C C C C 0

     
         

    
   (3.48) 

where 

  ( )ˆ( ) ,
3

s 0 0
1 1 1 2 1 2 2

0

4 n R1
C Y 1 m E Y Z

2 p

   
                  

            

                    

     ( )( ) ,
22

2 s 0 0
2 1 1 2 b

0

m RMZ c
C N c a b E k Z 4

p k

  
            

        ,3
3 2C N c a    

 

                     ( ) ,4 s
4 3 3 2 bC N c a b E k Z              ,6

6 5C N a c          .1 2      

 

4. Linearized model 
 
 In this section, we consider the linearized version of the model (3.48). Our particular interest is its 
dissipative part responsible for decay of the wave. 
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4.1. Evaluation of the parameters and the wave velocity 
 

 From [15]–[21], the values of the parameters are: densities, ( )L 1000  kg/m3
 for water, ( )g 2 

kg/m3 for gas, ( )s 2500  kg/m3
 for solid, porosity .0m 0 25 ; bulk modulus .  Pa9

bk 1 7 10  ; 

compressibility ( )  PaL 9 12 10    for water, ( ) .  Pag 6 12 4 10    for gas, ( )  Pas 10 12 10    for solid; 

steady pressure  Pa7
0p 10 ; bubble radius  ; 5

0R 5 10 m   volume gas content 3
0 10  ; viscosities 

 Pa s3
1 10    for water, Pa s5

2 2 10     for gas; adiabatic exponent .1 4  , and permeability 

.11 2k 2 10 m   Using the data from [14, 16, 21, 22], the values of the parameters of the rheological scheme 
in Fig.2 are  
 

        ( )L 2 2
1 sM L 10   kg/m,      ( ) .s 2

2 sM L 0 02   kg/m,      ( )g 2 6
3 sM L 2 10    kg/m  

and  

(a)  ( )/ L 5
1E 1 4 10    Pa,       2 7

2 0E c 2 10    Pa,       7
3 0E 3 p 4 10    Pa, 

 
where we used, just for the purpose of calculation of Ei and Mi, the typical velocity c 100 m/s and the 

linear size of the oscillator .sL 0 3 cm from [16, 23]. We will also explore the values of Ei obtained by a 

different method, namely by using the formula 2c   for all three phases, with   being the density of the 
liquid, solid and gas, respectively, 
 

(b)   ( ) Pa2 L 4
1E c 1000 10    ,       ( ) Pa2 s 4

2E c 2500 10    ,       ( ) Pa2 g 4
3E c 2 10    . 

 
 Now we apply the formula for the wave velocity (3.24) to show that it gives reasonable order of 
magnitude. For the wave with the bubbles (3.24) gives c 582 m/s for both variants (a) and (b). For the 
wave without the bubbles ( ,0n 0  ,0R 0  and 3M 0 ) c 740 m/s. This illustrates, in line with the 
previous studies that the bubbles may result in a considerable change of the wave velocity. Furthermore, we 
will also explore the following values of Ei obtained experimentally. 
  

(c)      Pa6
1E 10 ,         Pa9

2E 10 ,          Pa6
3E 10 . 

 
 This results in the wave velocity with the bubbles c ≈ 855m/s, and the wave velocity without the 
bubbles c ≈ 950m/s. 
 
4.2. Dissipation relation   

 
 Analysing the linearized model, we are interested in the influence of the bubbles on the decay rate of 
the wave. This effect is controlled by even derivatives. Therefore, we truncate the linearized Eq.(3.48) to the 
form 
 

  .
2 4 6

2 44 62
2 4 6

1 1 1

C CCv v v v

C C C

   
    

   
   (4.1) 

 

 For the Fourier modes exp( ),v t ikx  we get the dissipation relation 
 

  ( ) ,2 2 4 4 64 62

1 1 1

C CC
k k k k

C C C
          (4.2) 
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where λ is the decay rate and k is the wave number. 
 

 
 

Fig.3. The decay rate for variant (a), . /k 0 251 m  . 
 

 The plot in Fig.3 shows the decay rate at fixed . /k 0 251 m   [9] against R0 and n0. See that the 
increase in R0 significantly affects the decay rate and makes it in absolute value larger as the bubbles affect 
the system through the pressure .1 0 1p p R    As for 0n , one should disregard the region of small 0n  in 
Fig.3 where the equations of continuum mechanics are not valid. This is because the assumption that each 
bubble is embedded in its own fluid particle (see Eq.(2.2)) becomes inapplicable due to the large size of the 
particle. 
 

 
 
Fig.4.  The attenuation curves by formula (4.2) for variant (a). Left: 0n  varies, R0 = 5 × 10−5; right: R0 

varies, 10
0n 4 10  . 
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 Figure 4 compares the attenuation curves of the wave with and without the bubbles. The dashed line 
describes the case without the bubbles that is 0n 0 , and R0 = 0 and the other lines correspond to the wave 
with the bubbles. The figure on the left is for varying n0 and fixed R0. The figure on the right is for varying 
R0 and fixed n0. See that the curves lie entirely below zero, which means that the wave decays and the decay 
rate depends on the number and radius of the bubbles. This result agrees with the conception emphasized in 
[24, 25] about the essentially passive nature of the freely propagating elastic wave. Similar results are 
obtained for variants (b) and (c) as shown in Figs 5–8. 
 

 
 

Fig.5. The decay rate for variant (b), . /k 0 251 m  . 
 

 
 

Fig.6.  The attenuation curves by formula (4.2) for variant (b). Left: 0n  varies, R0 = 5 × 10−5; right: R0 

varies, 10
0n 4 10  . 
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Fig.7. The decay rate for variant (c), . /k 0 251 m  . 
 

 
 

Fig.8.  The attenuation curves by formula (4.2) for variant (c). Left: 0n  varies, R0 = 5 × 10−5; right: R0 

varies, 10
0n 4 10  . 

 
 For a different . /k 0 521 m   [26], the results are similar, see Fig.9. 
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Fig.9. The decay rate for variant (a), . /k 0 521 m  . 
 

5. Conclusions 
 
 We studied the effect of the rheology with gas bubbles and bubble dynamics on the elastic wave in a 
fluid-saturated medium. The P1 Frenkel-Biot wave is analysed, which corresponds to the fully saturated 
medium. Using three-segment rheology, we derived the Nikolaevskiy-type equation for the velocity of the 
solid matrix in the wave. The linearized version of the equation is compared in terms of the decay rate λ(k) of 
the Fourier modes. For both the cases with and without the bubbles, the λ(k)-curve lies entirely below zero. 
We discovered that λ(k) increases with the increase of the radius of the bubbles but decreases with the 
increase of the number of the bubbles. 
 
Nomenclature 
 
 k  permeability, [m2] 
 kb  bulk modulus, [Pa] 
 m  porosity 
 p  pressure, [Pa] 
 R  bubble radius, [m] 

  s   compressibility for solid, [Pa-1] 

  L   compressibility for water, [Pa-1] 

  g   compressibility for gas, [Pa-1] 
    adiabatic exponent 

    viscosity, [Pa.s] 

  s   density for solid, [kg/m3] 

  L   density for water, [kg/m3] 

  g   density for gas, [kg/m3] 

    volume gas content 
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Appendix 
 
 Equation (3.45) can be illustrated with this simple example. We will use the same notations v1 
and c as in the main text just to resemble the particle velocity and wave velocity 
 
  v1 + cv1 = 0, 
 
  2v1 + 4v1 = 0. 
 
 A non-zero solution of the system exists only if c = 2 (the eigenvalue of the problem). Here v1 is the 
analogy of the first approximation from our main text. The second approximation, v2, satisfies the system 
 
  v2 + cv2 = f [v1], 
 
  2v2 + 4v2 = g[v1], 
 
which is solvable only if the operators satisfy the equation g[v1] = 2f [v1]. This is the analogy to the 
Nikolaevskiy-type equation that we aim to derive. 
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